FIELDS
SEC 5.1 EXTENSION FIELDS
DEFINITION:
Let F be a field ; a field K is said to be an extension of F if K contained F(K o F).
K

NOTE:- (1). Kis an extension field of F if Fis a subfield of K.
(2).1f K is an extension field of F ,it can be treated as vector space over F and
dimension of V.Sp. taken as degree of the field.
Definition: The degree of K over F is the dimension of K as a vector space over F,
denoted by [K:F].

Definition: If K is a finite dimension vector space over F, then K is a finite extension
of F.

THEOREM 5.1.1:-
If L is af.extn. of K and if Kisa f.extn. of F, then L isaf.extn. of F.
Moreover , [L:F]=[L:K] [K:F]

PROOF:-

Suppose [L:K] = m and [K:F] =n. --------------- (1)

Letv,,v,,.., 1, beabasis of L over K and }
let w;,w,,...,w, be abasis of K over F.

Consider any element_t € L, then t can be written as linear combination of basis
VECtors vy, v, , .., Up,.

i.e.,t=kyvy + -+ ky vy, where ki € K ----------- 3)

Since K is a vector space over F and k; ‘s e K ,each k; can be written as I.c. of
Wi, Wy, ..., W,.

|e, kl = ai1Wwq + -+ A 1nWh-

kz = a1Wq + -+ AornWh.

ki = amawy + -+ appwy,. Where a;j € F
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Substituting these values of k; ‘s in (3) ,
t=(agwy + -+ a g Wp) 1+ .. (@ Wy + -+ AnWa) U
et =g vywy + -+ ag W, + o F A VW + o F T VW

Thus tis al.c of elements v;w; over F.So v;w; Span L over F.----(A)

Now we can prove v;w; are linearly independent over F.
Suppose f11 1wy + -+ finViWy + 210wy + 0+ fonVawn
o 1 VmWe + o+ VW= 0-------- (5)

Claim: Each fj; = 0.,s0 that the mn elements v;w; are linearly independent.
For, regrouping the terms in (5),k,v, + -+ + kv, = 0, —--—-- (6)

Where ki = fiywy + -+ fiaw,,1=1,....m
= Each k; =0.(sincev, ,v,, ..., v, be a basis of L over K)
= Ki=fiiwy + -+ finw, =0, fori=l1,....m.
=>each fij = 0(since w, ,w, , ..., w,, be a basis of K over F).

So v;w; are linearly independent over F.---(B)

Thus v;w; (mn) elements form a basis of L over F.( From (A)& (B))

Thus [L:F] =mn. Hence L is a f.extn. of E.//

Moreover[L:F] = mn
i.e.,[L:F] = [L:K][K:F](by eqn(1)//
Hence the theorem.
COR 1
If L is a f.extn of F and if K is a subfield of L that contains F,

then [K:F] | [L:F]

PROOF: Suppose L,K,F are fields s.t LoK>F and [L:F] is finite.
Any element in L is linearly independent over K,are all linearly
independent over F.Thus [L:F] is finite =>[L:K] is finite.
Since K is a subspace of L,[K:F] is also finite.

By thm/. [L:F] = mn, where [K:F] =n. Thus njnm. i.e., [K:F] | [L: F].

kkhkkkhkkkhkkhkkhkkhkkhkkkikkkhkkhkkkikkkikkikkk



Note: If [L:F] is a prime number, then there can be no fields properly between L and
F.

DEFINITION: An element a € K is said to be algebraic over F if there exist
elements ay , a4 , ..., a, inF, notall 0, such that aga™ + a;a™ 1 + .-+ a,, = 0.

Note: 1.Consider the ring of Polynomials in x over F denoted by F[x].If q(x) € F[X]
and q(x) = Box™ + B1x™"1 + --- + B,,then any element b € K ,q(b) can be written as

q(b) = Bob™ + Bb™ 1 + -+ B, €K.
i.e., g(b) is equal to q(x) at x=b.

2. In these terms a € K is said to be algebraic over F if there is a nonzero polynomial
pP(X) € F[x],so0 that a satisfies p(x).

i.e., p(a) =0.

Definition: Adjoining an elementa € K to F.

Let K be an extension of F and let a € K.Consider the collection . of all subfield of
K which contain both F and a. Since K itself is a subfield of K, an element of 4

and so is nonempty. The intersection of all these subfields of K which are members
of M is a subfield of K. That subfield is denoted by F(a).

It has the following properties:-
(i). It contains both F and a
(ii).F@) isin A

Thus F(a) is the smallest subfield of K containing both F and a. So F(a) called as
subfield obtained by adjoining a to F.

THEOREM 5.1.2 : Anelement a € K is algebraic over F if and only if F(a) is a

finite extension of F.
PROOEF: Sufficient part:
Suppose that E(a) is a f.extn. of F and that [F(a):F] = m.------ 1)

Consider the elements 1,a,a,...,a™ ; they are all in F(a)and are m+1 in
number, greater than the degree ,they are linearly dependent over F.

Therefore there are elements «,, , a4 , ..., a,, in F ,not all O,such that ¢y1 + ¢;a +
et apa™ =00 --meeeee- (2)

Hence a is algebraic over F and satisfies the nonzero polynomial

PX)=ay + a; x + -+ aypx™ InF[X] .

Thus second part proved.//



Conversely, Suppose a € K is algebraic over F .By the definition ,there exist a
nonzero polynomial p(x) in F[x] such that p(a)=0.Suppose that deg p(x) is the smallest
one.

Claim: p(x) is irreducible over F

For, suppose that p(x) = f(x).g(x),where f(x),g(x) in F[x].-------- (2)

Ifp(@d) =0 = f(a)g(a)=0

— f(a)=0org(a)=0
Also deg f(x) = deg p(x) (or)
deg g(x) = deg p(x) ---------------- (2)(*~deg p(x) is smallest )
But from eqn/. (1),deg p(x) = deg { f(x).g(x)}
= deg f(x) + deg g(x)---—--(3)
From (2) &(3) we conclude either deg f(x) =0 (or) deg g(x) =0

= Either f(x) or g(x) is a constant polynomial.

~p(x) is irreducible over F.

Consider the mapping W: F[x] — F(a) defined as W(h(x)) = h(a) is a ring
homomorphism..

Let V denote the kernel of W.By defn/. V = {h(x) € F(x)| h(a) = 0}.

Also p(x) € V (since p(a) = 0). Since p(x) is of smallest degree ,h(x) in V is a multiple
of p(x).

By division algorithm we can find q(x) , r(x) €F[x], so that h(x) = q(x).p(x) +r(x),
where either r(x) = 0 or deg r(x) < deg p(x).

Claim : r(x) = 0.
For ,otherwise r(x) = h(x) — q(x).p(x).

r(@) = h(a) -q(a).p(a) =0 {~ h(a) =0,p(a) = 0

= r(X) e V and deg r(x) < deg p(x) is a contradiction.
Thus r(x) = 0.

Therefore h(x) is a multiple of p(x).

Since F[x] is an Euclidean ring and V consists of all element which are multiple of
p(x) ,V is an ideal of F[x],it is also a maximal ideal.(~- p(x) is irreducible over F).

By general homomorphism on rings % Is isomorphic to the image of F[x] under V.



The image of F[x] under W is a subfield of F(a) which contains both F and a.
But by the defn/. F(a) is the smallest subfield of K that contains both F and a.

=~ The image of F[x] under W is all of F(a).

Hence % Is isomorphic to F(a) itself. Then dim F(a) is same as dim %

Since V is generated by p(x) , dim % IS same as deg p(x),say n.

~ [F(a]:F] = deg p(x) =n.
I.e., F(a) is a finite extension of F.//.------- THM/. Proved.
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DEFINITION: Algebraic of degree n.

The element a € K is said to be algebraic of degree n over F if it satisfies a nonzero
polynomial over F of degree n but no nonzero polynomial of lower degree.

THEOREM:5.1.3

If a € K is said to be algebraic of degree n over F, then [F(a):F] = n.

Proof: Converse part of the theorem 5.1.2.
THEOREM :5.1.4

If a, b e K are algebraic over F, thena + b, ab and a/ b (if b # O)are all algebraic over
F. In other words, the elements in K which are algebraic over F, form a subfield of K.

PROOF:

Suppose that a is algebraic of degree m over F and b is algebraic of degree n
over F, then by theorem [F(a):F ] = m & [F(b):F] = n ------------- (1)

Now ,let T = F(a) the subfield of K is of degree m over F.------- 2)

Now b is algebraic of degree n over F.=that it is algebraic of degree atmost n over
over T which contains F.Thus the subfield W = T(b) of K is of degree atmost n over T.
e, [F(@):F] =m &[T(b):T] <n

Now [W:F] = [W:T] [T:F]
< nm.
Thus W is a finite extension of F.

Sincea,beW,a+b,abanda/beW. Then by thm/.a+ b,aband a/b are all
algebraic over F.

Hence the thm//..



Note: Since [W:F] <nm, every element in W satisfies a polynomial of degree at most
mn.

Cor: If a, b e K are algebraic over F of degree m & n respectively, then a + b, ab and
a/ b are all algebraic over F of degree at most mn.

Notations:

In the thm/. ,named two extensions F(a) as T and T(b) as W. Thus W= (F(a))(b)
= F(a,b)

Similarly (F(b))(a) = F(b,a). Also F(a,b) =F(b,a) for all a,b € K.

Continuing this pattern, we can define F(aj,ay,...,an) for all elements a;,a,...,.ane K
are algebraic over F.

DEFINITION:-

The extension K of F is called algebraic extension of F if every element in K is
algebraic over F.

THEOREM:5.15

If Lis an algebraic extension of K and if K is an algebraic extension of F then L is an
algebraic extension of F .

Proof: Consider an arbitrary element u in L.
Since L is an algebraic extension of K ,there exist a nonzero polynomial of the form
x™ + o x™ 1 + .-+ g,x% where gy, ...0,, are in K.

Since K is algebraic extension of E, each g; is algebraic over F, We have finite
extensions F(ay) ,...F(oy, ...0,) by thm/(5.1.3).

Let M= F(agy, ...0,,) is a finite extension of F, by defn/. g; € M.

Since u satisfies the polynomial x™ + o;x""! + --- + g,, whose coefficients are in
M ,u is algebraic over M.

Then M(u) is a finite extension of M. (by thm./.5.1.2)
Therefore by Thm/(5.1.1). [M(u):F] = [M(u):M][M:F],
= M(u) is the finite extension of F.

= u is algebraic over F. Thus L is algebraic extn/. of F.

Hence the THM//.



Definition: A complex number is said to be an algebraic number if it is algebraic over
the field of rational numbers. Otherwise called transcendental.

Problem:1. What is the degree of v2 + v/3 over Q ?
Solution: Let x = V2 +/3 -----m----- (1)

Squaring on both sides,
x? =(V2 ++3)?%
ie., x2 =5+2+2+3
ie., x2 -5=24/6
Squaring on both sides,
(x2 — 5)2=24
e, x*—10x2+1=0.
We have a polynomial of degree 4.= The degree of V2 + /3 over Q is 4./
2. What is the degree of v/2 V3 over Q ? Home Work.



