
 

 

FIELDS 

SEC 5.1  EXTENSION  FIELDS 

     DEFINITION: 

      Let F be a field ; a field K is said to be an extension of F if K contained F(K  ⸧ F). 

                                                                                                       K 

                                                                                     F                               

 

NOTE:- (1). Kis an extension field of F if  Fis a subfield of K. 

               (2).If K is an extension field of F ,it can be treated as vector space over F and  

                    dimension of V.Sp. taken as degree of the field. 

Definition: The degree of K over F is the dimension of K as a vector space over F,  

                    denoted by [K:F]. 

Definition: If K is a finite dimension vector space over F, then K is a finite extension 

of F. 

THEOREM 5.1.1:- 

    If L is a f.extn. of K  and  if  K is a f.extn. of F , then L is a f.extn. of F . 

    Moreover ,  [L:F] = [L:K] [K:F] 

PROOF:- 

Suppose [L:K] = m and [K:F] =n. ---------------(1) 

Let 𝑣1 , 𝑣2 , … , 𝑣𝑚 be a basis of L over K and 

 let   𝑤1 , 𝑤2 , … , 𝑤𝑛 be a basis of K over F.             -------------(2) 

Consider any element   t ϵ L, then  t can be written as linear combination of basis 

vectors  𝑣1 , 𝑣2 , … , 𝑣𝑚.  

  i.e., t = 𝑘1𝑣1 + ⋯ + 𝑘𝑚𝑣𝑚, where  ki  ϵ K -----------(3) 

   Since K is a vector space over F and  ki ‘s ϵ  K  ,each ki can be written as l.c. of 

   𝑤1 , 𝑤2 , … , 𝑤𝑛. 

 i.e., 𝑘1 = 𝛼11𝑤1 + ⋯ + 𝛼1𝑛𝑤𝑛. 

        𝑘2 = 𝛼21𝑤1 + ⋯ + 𝛼2𝑛𝑤𝑛. 

         .                                                                                      (4) 

         . 

.        𝑘𝑚 = 𝛼𝑚1𝑤1 + ⋯ + 𝛼𝑚𝑛𝑤𝑛.,where 𝛼𝑖𝑗 ∈ 𝐹 

                



  

   

Substituting these values of ki ‘s in (3)  , 

t = (𝛼11𝑤1 + ⋯ + 𝛼1𝑛𝑤𝑛) 𝑣1 + …+ (𝛼𝑚1𝑤1 + ⋯ + 𝛼𝑚𝑛𝑤𝑛) 𝑣𝑚. 

i.e.,t   = 𝛼11𝑣1𝑤1 + ⋯ + 𝛼1𝑛𝑣1𝑤𝑛 + ⋯ + 𝛼𝑚1𝑣𝑚𝑤1 + ⋯ + 𝛼𝑚𝑛𝑣𝑚𝑤𝑛. 

Thus t is a l.c of elements 𝑣𝑖𝑤𝑗  over F.So 𝒗𝒊𝒘𝒋 Span L over F.----(A) 

Now we can prove  𝑣𝑖𝑤𝑗 are linearly independent over F. 

Suppose 𝑓11𝑣1𝑤1 + ⋯ + 𝑓1𝑛𝑣1𝑤𝑛 + 𝑓21𝑣2𝑤1 + ⋯ + 𝑓2𝑛𝑣2𝑤𝑛         

                  +…+𝑓𝑚1𝑣𝑚𝑤1 + ⋯ + 𝑓𝑚𝑛𝑣𝑚𝑤𝑛= 0--------(5) 

Claim: Each  fij = 0.,so that the mn elements 𝑣𝑖𝑤𝑗   are linearly independent. 

For, regrouping the terms in (5),𝑘1𝑣1 + ⋯ + 𝑘𝑚𝑣𝑚 = 0, .------(6) 

         Where  ki = 𝑓𝑖1𝑤1 + ⋯ + 𝑓𝑖𝑛𝑤𝑛, i =1,…,m 

⟹ Each  ki =0.(since𝑣1 , 𝑣2 , … , 𝑣𝑚 be a basis of L over K) 

 ⟹ ki = 𝑓𝑖1𝑤1 + ⋯ +  𝑓𝑖𝑛𝑤𝑛 = 0, for i =1,…,m . 

=>each fij  = 0(since 𝑤1 , 𝑤2 , … , 𝑤𝑛 be a basis of K over F). 

So  𝒗𝒊𝒘𝒋 are linearly independent over F.---(B) 

Thus  𝑣𝑖𝑤𝑗 (mn)  elements form a basis of L over F.( From (A)& (B)) 

 Thus [L:F] =mn. Hence L is a f.extn. of F.// 

Moreover[L:F] = mn                                                 

           i.e.,[L:F] = [L:K][K:F](by eqn(1)// 

Hence the theorem. 

COR :1 

If L is a f.extn of F and if K is a subfield of L that contains F, 

 then [K:F] | [L:F] 

PROOF: Suppose L,K,F are fields s.t  L⸧K⸧F and [L:F] is finite. 

               Any element in L is linearly independent over K,are all linearly  

                independent over F.Thus [L:F] is finite =>[L:K] is finite. 

                Since K is a subspace of L,[K:F] is also finite. 

By thm/. [L:F] = mn, where [K:F] =n. Thus n|nm. i.e., [K:F] | [L: F]. 

********************** 

 

 



 

 

 Note: If [L:F] is a prime number, then there can be no fields properly between L and 

F. 

DEFINITION: An element a ∈ 𝑲 is said to be algebraic over F if there exist 

elements 𝛼0 , 𝛼1 , … , 𝛼𝑛  in F , not all 0, such that 𝛼0𝑎𝑛 + 𝛼1𝑎𝑛−1 + ⋯ + 𝛼𝑛 = 0. 

Note: 1.Consider the ring of Polynomials in x over F denoted by F[x].If q(x) ϵ F[x] 

and q(x) = 𝛽0𝑥𝑛 + 𝛽1𝑥𝑛−1 + ⋯ + 𝛽𝑛,then any element b ϵ K ,q(b)  can be written as  

q(b) = 𝛽0𝑏𝑛 + 𝛽1𝑏𝑛−1 + ⋯ + 𝛽𝑛 ϵ K. 

i.e., q(b) is  equal to q(x) at x= b. 

2. In these terms a ∈ 𝑲 is said to be algebraic over F if there is a nonzero polynomial   

p(x) ϵ F[x],so that a satisfies p(x). 

i.e., p(a) = 0. 

Definition: Adjoining an element a ∈ 𝑲 to F. 

Let K be an extension  of F and let   a ∈ 𝑲.Consider the collection M of all subfield of 

K which contain both F and a. Since K itself is a subfield of K, an element of  M 

  and  so  is nonempty. The intersection of all these subfields of K which are members 

of M  is a subfield of K. That subfield is denoted by F(a). 

It has the following properties:- 

  (i). It contains both F and  a 

   (ii).F(a) is in M 

Thus F(a) is the smallest subfield of K containing both F and a. So F(a) called as 

subfield obtained by adjoining a to F. 

THEOREM 5.1.2 : An element a ∈ 𝐾 is algebraic over F  if and only if F(a) is a  

                                       finite extension of F. 

PROOF: Sufficient part: 

Suppose that F(a) is a f.extn. of F and that [F(a):F] = m.------(1) 

                  Consider  the elements 1,a,a2,…,am ; they are all in F(a)and are m+1 in 

number, greater than the degree ,they are linearly dependent over F. 

Therefore ,there are elements 𝛼0 , 𝛼1 , … , 𝛼𝑛  in F ,not all 0,such that 𝛼01 + 𝛼1𝑎 +

⋯ + 𝛼𝑚𝑎𝑚 = 0.  ----------(2) 

Hence a is algebraic over F and satisfies the nonzero polynomial  

p(x)=𝛼0 + 𝛼1 𝑥 + ⋯ + 𝛼𝑚𝑥𝑚 in F[x] . 

Thus second part proved.// 

 



 

 

Conversely, Suppose a ∈ 𝑲 is algebraic over F  .By the definition ,there exist a 

nonzero polynomial p(x) in F[x] such that p(a)=0.Suppose that deg p(x) is the smallest 

one. 

Claim: p(x) is irreducible over F  

For, suppose that p(x) = f(x).g(x),where f(x),g(x) in F[x].--------(1) 

       If p(a) = 0   ⟹ f(a)g(a) = 0 

                            ⟹ f(a) = 0 or g(a) = 0 

       Also deg f(x) ≥ deg p(x) (or) 

                 deg g(x) ≥ deg p(x) ----------------(2)(∵deg p(x) is smallest ) 

        But from eqn/. (1),deg p(x) = deg { f(x).g(x)} 

                                                     = deg f(x) + deg g(x)------(3) 

     From (2) &(3) we conclude either deg f(x) = 0 (or) deg  g(x) = 0 

                      ⟹ Either f(x) or g(x)  is a constant polynomial. 

     ∴p(x) is irreducible over F. 

Consider the mapping  Ψ: F[x]  ⟶ F(a) defined as Ψ(h(x)) = h(a) is a ring 

homomorphism.. 

Let V denote the kernel of Ψ.By defn/. V = {h(x)  ϵ F(x)| h(a) = 0}. 

Also p(x) ϵ V (since p(a) = 0 ). Since p(x) is of smallest degree ,h(x) in V is a multiple 

of p(x). 

By division algorithm we can find q(x) , r(x) ∈F[x], so that  h(x) = q(x).p(x) +r(x), 

where either r(x) = 0 or deg r(x) ≤ deg p(x). 

Claim : r(x) = 0. 

For ,otherwise r(x) = h(x) – q(x).p(x). 

                        r(a) = h(a) -q(a).p(a) = 0 {∵ h(a) = 0,p(a) = 0 

                       ⟹ r(x) ϵ V and deg r(x) ≤ deg p(x) is a contradiction. 

Thus r(x) = 0. 

Therefore h(x) is a multiple of p(x). 

Since F[x] is an Euclidean ring  and V consists of all element which are multiple of 

p(x) ,V is an ideal of F[x],it is also a maximal ideal.(∵ p(x) is irreducible over F). 

By general homomorphism on rings ,
𝐹[𝑥]

𝑉
 is isomorphic to the image of F[x] under Ψ. 

 



 

 

The image of F[x] under Ψ  is a subfield of F(a) which contains both F and a. 

But by the defn/. F(a) is the smallest subfield of K that contains both F and a. 

 ∴  The image of F[x] under Ψ is all of F(a). 

Hence 
𝑭[𝒙]

𝑽
 is isomorphic to F(a) itself. Then dim F(a) is same as dim 

𝐹[𝑥]

𝑉
. 

Since V is generated by p(x) , dim 
𝐹[𝑥]

𝑉
 is same as deg p(x),say n. 

∴ [F(a]:F] = deg p(x) = n. 

i.e., F(a) is a finite extension of F.//.-------THM/. Proved. 

    ************************************************************* 

DEFINITION: Algebraic of degree n. 

The element a ∈ 𝑲 is said to be algebraic of degree n over F if it satisfies a nonzero 

polynomial over F of degree n but no nonzero polynomial of lower degree. 

THEOREM:5.1.3 

If a ∈ 𝑲 is said to be algebraic of degree n over F, then [F(a):F] = n. 

Proof: Converse part of the theorem 5.1.2. 

THEOREM :5.1.4 

If a, b ϵ K are algebraic over F, then a ± b, ab and a / b (if b ≠ 0)are all algebraic over 

F. In other words, the elements in K which are algebraic over F, form a subfield of K. 

PROOF: 

              Suppose that a is algebraic of degree m over F and b is algebraic of degree n 

over F, then by theorem [F(a):F ] = m & [F(b):F] = n -------------(1) 

Now ,let T = F(a) the subfield of K is of degree m over F.-------(2) 

Now b is algebraic of degree n over F.⟹that it is algebraic  of degree atmost n over 

over T which contains F.Thus the subfield W = T(b) of K is of degree atmost n over T. 

i.e., [F(a):F] =m &[T(b):T] ≤ n 

Now [W:F] = [W:T] [T:F] 

                   ≤ nm. 

𝑇ℎ𝑢𝑠 𝑊 𝑖𝑠 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐹. 

 Since a , b ϵ W, a ± b, ab and a / b ϵ W. Then by thm/. a ± b, ab and a / b are all 

algebraic over F. 

Hence the thm//.. 

 

 



 

 

 

Note: Since [W:F] ≤ nm, every element in W satisfies a polynomial of degree at most 

mn. 

Cor: If a, b ϵ K are algebraic over F of degree m & n respectively, then  a ± b, ab and 

a / b are all algebraic over F of degree at most mn. 

Notations: 

In the thm/. ,named two extensions F(a) as T and T(b) as W. Thus W= (F(a))(b) 

                                                                                                                = F(a,b) 

Similarly (F(b))(a) = F(b,a). Also F(a,b) =F(b,a) for all a,b ϵ K. 

Continuing this pattern, we can define  F(a1,a2,…,an) for all elements   a1,a2,…,an ϵ  K  

are algebraic over F. 

DEFINITION:- 

The extension K of F is called algebraic extension of F if every element in K is 

algebraic over F. 

THEOREM:5.1.5 

If Lis an algebraic extension of K and if K is an algebraic extension of F then L is an 

algebraic extension of F . 

Proof: Consider an arbitrary element u in L. 

Since L is an algebraic extension of K ,there exist a nonzero polynomial of the form  

𝑥𝑛 + 𝜎1𝑥𝑛−1 + ⋯ + 𝜎𝑛𝑥0,where 𝜎1, … 𝜎𝑛 are in K. 

Since K is algebraic extension of F, each 𝜎𝑖   is algebraic over F, We have finite 

extensions F(𝜎1)       ,…,F(𝜎1, … 𝜎𝑛)  by thm/(5.1.3). 

Let M= F(𝜎1, … 𝜎𝑛)  is a finite extension of F, by defn/. 𝜎𝑖  ϵ M. 

Since u satisfies the polynomial 𝑥𝑛 + 𝜎1𝑥𝑛−1 + ⋯ + 𝜎𝑛 whose  coefficients are in 

M ,u is algebraic over M. 

Then M(u) is a finite extension of M. (by thm./.5.1.2) 

Therefore by Thm/(5.1.1). [M(u):F] = [M(u):M][M:F], 

⟹ M(u) is the finite extension of F. 

⟹ u is algebraic over F. Thus L is algebraic  extn/. of F. 

𝐻𝑒𝑛𝑐𝑒 𝑡ℎ𝑒 𝑇𝐻𝑀//. 

 

 

 



 

 

Definition: A complex number is said to be an algebraic number if it is algebraic over 

the field of rational numbers. Otherwise called transcendental. 

Problem:1. What is the degree of √2 + √3 over Q ? 

Solution: Let 𝑥 = √2  +√3 ------------(1) 

              Squaring on both sides,  

                         𝑥2   =(√2  + √3 ) 2    , 

                 i.e.,       𝑥2    = 5+ 2  √2  √3     

                i.e.,         𝑥2  - 5 = 2 √6 

                  Squaring on both sides, 

                    (𝑥2   −  5 )2 = 24 

              i.e.,  𝑥4 − 10𝑥2 + 1 = 0. 

We have a polynomial of degree 4.⟹ The degree of √𝟐 + √𝟑 over Q is 4.// 

2. What is the degree of √2 √3 over Q ?  Home Work. 


